Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization.

نویسندگان

  • Takahiro Ishikawa
  • Naoko Tajima
  • Hitoshi Nishikawa
  • Yongshun Gao
  • Madhusudhan Rapolu
  • Hitoshi Shibata
  • Yoshihiro Sawa
  • Shigeru Shigeoka
چکیده

Euglena gracilis lacks a catalase and contains a single APX (ascorbate peroxidase) and enzymes related to the redox cycle of ascorbate in the cytosol. In the present study, a full-length cDNA clone encoding the Euglena APX was isolated and found to contain an open reading frame encoding a protein of 649 amino acids with a calculated molecular mass of 70.5 kDa. Interestingly, the enzyme consisted of two entirely homologous catalytic domains, designated APX-N and APX-C, and an 102 amino acid extension in the N-terminal region, which had a typical class II signal proposed for plastid targeting in Euglena. A computer-assisted analysis indicated a novel protein structure with an intramolecular dimeric structure. The analysis of cell fractionation showed that the APX protein is distributed in the cytosol, but not the plastids, suggesting that Euglena APX becomes mature in the cytosol after processing of the precursor. The kinetics of the recombinant mature FL (full-length)-APX and the APX-N and APX-C domains with ascorbate and H2O2 were almost the same as that of the native enzyme. However, the substrate specificity of the mature FL-APX and the native enzyme was different from that of APX-N and APX-C. The mature FL-APX, but not the truncated forms, could reduce alkyl hydroperoxides, suggesting that the dimeric structure is correlated with substrate recognition. In Euglena cells transfected with double-stranded RNA, the silencing of APX expression resulted in a significant increase in the cellular level of H2O2, indicating the physiological importance of APX to the metabolism of H2O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Ascorbic Acid Peroxidase

Euglena gracilis was found to contain a peroxidase that specifically requires L-ascorbic acid as the natural electron donor in the cytosol. The presence of an oxidation-reduction system metabolizing L-ascorbic acid was demonstrated in Euglena cells. Oxidation of L-ascorbic acid by the peroxidase, and the absence of ascorbic acid oxidase activity, suggests that the system functions to remove H20...

متن کامل

Characterization and physiological function of glutathione reductase in Euglena gracilis z.

The purified glutathione reductase was homogeneous on polyacrylamide-gel electrophoresis. It had an Mr of 79,000 and consisted of two subunits with a Mr of 40,000. The activity was maximum at pH 8.2 and 52 degrees C. It was specific for NADPH but not for NADH as the electron donor; the reverse reaction was not observed. The Km values for NADPH and GSSG were 14 and 55 microM respectively. The en...

متن کامل

Characterization of ascorbate peroxidases from unicellular red alga Galdieria partita.

Galdieria partita, a unicellular red alga isolated from acidic hot springs and tolerant to sulfur dioxide, has at least two ascorbate peroxidase (APX) isozymes. This was the first report to demonstrate that two isozymes of APX are found in algal cells. Two isozymes were separated from each other at the hydrophobic chromatography step of purification and named APX-A and APX-B after the elution o...

متن کامل

The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry.

Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here w...

متن کامل

Euglena gracilis ribonucleotide reductase: the eukaryote class II enzyme and the possible antiquity of eukaryote B12 dependence.

Ribonucleotide reductases provide the building blocks for DNA synthesis. Three classes of enzymes are known, differing widely in amino acid sequence but with similar structural motives and allosteric regulation. Class I occurs in eukaryotes and aerobic prokaryotes, class II occurs in aerobic and anaerobic prokaryotes, and class III occurs in anaerobic prokaryotes. The eukaryote Euglena gracilis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 426 2  شماره 

صفحات  -

تاریخ انتشار 2010